Generalized Catalan Numbers: Linear Recursion and Divisibility

نویسنده

  • B. Sury
چکیده

We prove a linear recursion for the generalized Catalan numbers Ca(n) := 1 (a−1)n+1 ( an n ) when a ≥ 2. As a consequence, we show p |Cp(n) if and only if n 6= p−1 p−1 for all integers k ≥ 0. This is a generalization of the well-known result that the usual Catalan number C2(n) is odd if and only if n is a Mersenne number 2 k − 1. Using certain beautiful results of Kummer and Legendre, we give a second proof of the divisibility result for Cp(n). We also give suitably formulated inductive proofs of Kummer’s and Legendre’s formulae which are different from the standard proofs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Divisibility of generalized Catalan numbers

We define a q generalization of weighted Catalan numbers studied by Postnikov and Sagan, and prove a result on the divisibility by p of such numbers when p is a prime and q its power.

متن کامل

-Catalan Numbers and Squarefree Binomial Coefficients

In this paper we consider the generalized Catalan numbers F (s, n) = 1 (s−1)n+1 ( sn n ) , which we call s-Catalan numbers. We find all natural numbers n such that for p prime, p divides F (p, n), q ≥ 1 and all distinct residues of F (p, n) (mod p), q = 1, 2. As a byproduct we settle a question of Hough and the late Simion on the divisibility of the 4-Catalan numbers by 4. We also prove that ( ...

متن کامل

Some Identities and Formulas Involving Generalized Catalan Numbers Siu-ah Ng

A generalization of the Catalan numbers is considered. New results include binomial identities, recursive relations and a close formula for the multivariate generating function. A simple expression for the Catalan determinant is derived.

متن کامل

Proof of two Divisibility Properties of Binomial Coefficients Conjectured by Z.-W. Sun

For all positive integers n, we prove the following divisibility properties: (2n + 3) ( 2n n ) ∣∣∣∣3(6n 3n )( 3n n ) and (10n + 3) ( 3n n ) ∣∣∣∣21(15n 5n )( 5n n ) . This confirms two recent conjectures of Z.-W. Sun. Some similar divisibility properties are given. Moreover, we show that, for all positive integers m and n, the product am ( am+bm−1 am )( an+bn an ) is divisible by m + n. In fact,...

متن کامل

Several Explicit and Recursive Formulas for the Generalized Motzkin Numbers

In the paper, the authors find two explicit formulas and recover a recursive formula for the generalized Motzkin numbers. Consequently, the authors deduce two explicit formulas and a recursive formula for the Motzkin numbers, the Catalan numbers, and the restricted hexagonal numbers respectively.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009